A light-activated GTPase in vertebrate photoreceptors: regulation of light-activated cyclic GMP phosphodiesterase.

نویسندگان

  • G L Wheeler
  • M W Bitensky
چکیده

We have been studying the mechanism by which light and nucleoside triphosphates activate the discmembrane phosphodiesterase (oligonucleate 5'-nucleotidohydrolase; EC 3.1.4.1) in frog rod outer segments. GTP is orders of magnitude more effective than ATP as a cofactor in the light-dependent activation step. GTP and the analogue guanylyl-imidodiphosphate function equally as allosteric activators of photoreceptor phosphodiesterase rather than participating in the formation of a phosphorylated activator. Moreover, we have found a light-activated (5-fold) GTPase which participates in the modulation of photoreceptor phosphodiesterase. This GTPase activity appears necessary for the reversal of phosphodiesterase activation in vitro and may play a critical role in the in vivo regulation of light-sensitive phosphodiesterase. The K(m) for GTP in the light-activated GTPase reaction is <1 muM. The light sensitivity of this GTPase (number of photons required for half-maximal activation) is identical to that of light-activated phosphodiesterase. The GTPase action spectrum corresponds to the absorption spectrum of rhodopsin. There is, in addition, a light-insensitive GTPase activity with a K(m) for GTP of 90 muM. At GTP concentrations above 5 muM, there is no appreciable activation of GTPase activity by light. The substrate K(m) values for guanylate cyclase, light-activated GTPase, and light-activated phosphodiesterase order an enzyme array that might permit light to simultaneously cause the hydrolysis of both the substrate and product of guanylate cyclase. These findings reveal yet another facet of light regulation of photoreceptor/cyclic GMP levels and also provide a striking analogy to the GTP regulation of nonphotoreceptor, hormone-sensitive adenylate cyclase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Onset of Feedback Reactions Underlying Vertebrate Rod Photoreceptor Light Adaptation

Light adaptation in vertebrate photoreceptors is thought to be mediated through a number of biochemical feedback reactions that reduce the sensitivity of the photoreceptor and accelerate the kinetics of the photoresponse. Ca2+ plays a major role in this process by regulating several components of the phototransduction cascade. Guanylate cyclase and rhodopsin kinase are suggested to be the major...

متن کامل

Rod light response augmented by active phosphodiesterase.

Light activates rod outer segment (ROS) phosphodiesterase (PDEase), as shown by previous biochemical and physiological studies. We have further investigated the role of PDEase in this system by injecting trypsin-activated PDEase, purified from bovine ROS, into single ROS of the isolated retina of the toad Bufo marinus. Injection of about 300 molecules of activated PDEase in darkness is without ...

متن کامل

Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase.

Sensory photoreceptors elicit vital physiological adaptations in response to incident light. As light-regulated actuators, photoreceptors underpin optogenetics, which denotes the noninvasive, reversible, and spatiotemporally precise perturbation by light of living cells and organisms. Of particular versatility, naturally occurring photoactivated adenylate cyclases promote the synthesis of the s...

متن کامل

A derivative of amiloride blocks both the light-regulated and cyclic GMP-regulated conductances in rod photoreceptors

Vertebrate rod photoreceptors in the dark maintain an inward current across the outer segment membrane. The photoresponse results from a light-induced suppression of this dark current. The light-regulated current is not sensitive to either tetrodotoxin or amiloride, potent blockers of Na+ channels. Here, we report that a derivative of amiloride, 3',4'-dichlorobenzamil (DCPA), completely suppres...

متن کامل

Rhodopsin kinase and recoverin modulate phosphodiesterase during mouse photoreceptor light adaptation

Light stimulates rhodopsin in a retinal rod to activate the G protein transducin, which binds to phosphodiesterase (PDE), relieving PDE inhibition and decreasing guanosine 3',5'-cyclic monophosphate (cGMP) concentration. The decrease in cGMP closes outer segment channels, producing the rod electrical response. Prolonged exposure to light decreases sensitivity and accelerates response kinetics i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 74 10  شماره 

صفحات  -

تاریخ انتشار 1977